湘教版六年级上册数学教案8篇

时间:
betray
分享
下载本文

不管编写什么科目的教案,都需要注重教学过程的引导和反馴,促进学生的自主学习,教案是教师教学过程中的有力支撑,精品文档站小编今天就为您带来了湘教版六年级上册数学教案8篇,相信一定会对你有所帮助。

湘教版六年级上册数学教案8篇

湘教版六年级上册数学教案篇1

实践要求:

1、经历有目的、有设计、有步骤、有合作的实践活动。

2、结合实际情境,体验发现和提出问题、分析和解决问题的过程。

3、在给定目标下,感受针对具体问题提出设计思路、制定简单的方案解决问题的过程。

4、通过应用和反思,进一步理解所用的知识和方法,了解所学知识之间的联系,获得数学活动经验。

教学内容:

冀教版小学数学六年级上册69——70页。

教学目标:

1、知识技能:学会理财,能对自己设计的理财方案作出合理的解释。

2、数学思考:如何对自己设计的理财方案作出合理的解释。

3、问题解决:可以通过比较、思考、交流的方法,经历计算对自己的理财方案作出解释。

4、情感态度:感受理财的重要性,经历运用所学的知识学习理财,培养科学、合理的理财观念。

教学重点:

学会理财,会对自己设计的理财方案作出合理的解释。

教学难点:

对自己设计的理财方案作出合理的解释。

教学流程:

一、导入

老师最近看了一套《贝贝熊系列》丛书,是关于培养孩子理财能力方面的书籍,读了以后觉得受益匪浅,在动物界,贝贝熊通过学习能做到对自己的财富有计划、合理支配,我想我们通过这一单元前面的学习,也能够对我们的财富进行支配,你们同意吗?那好,希望通过这节课,我们也能合理支配自己的财富,即掌握《学会理财》的能力。

{设计意图:通过和学生谈话,轻松引入本节课的课题}

二、任务??

设计方案,解决问题

聪聪的爸爸是一个工程师,他设计的一个工程中标后,老板奖励他8000元的奖金。再过6年聪聪就要上大学了,爸爸决定把这笔钱存入银行,留给聪聪上大学用。(存款方式为整存整取)

(1)小组合作,做出3个存钱方案。(提示:小组先商议好方案,然后写到学案上)

(2)并算每种方案可获得的利息。(根据小组制定的三种存钱方案,组长做好合理分工,计算利息,为了便于计算,我们计算利息的时候,只考虑本金)

(3)议一议:你认为那种存钱方案?为什么?

{设计意图:学生通过前面的学习,已经具备了计算利息的能力,学生能够根据聪聪家的情况,制定不同的存钱方案,进而计算每种方案的利息,从而获得一种成功的喜悦感}

三、小组汇报、展示

{在学生计算的过程中,教师巡视,发现学生有代表性的方案进行展示,重点放在解释哪种方案,即学生能对自己制定的方案进行合理的解释}

四、任务二

聪聪一家三口,妈妈每月的工资是2160元,爸爸每月的工资是4180元,爸爸的工资中还要缴纳30多元的个人所得税。过6年聪聪要上大学,请你帮聪聪家做一个零存整取的计划。

零存整取:零存整取是银行定期储蓄的一种基本类型,是指储户在进行银行存款时约定存期、每月固定存款、到期一次支取本息的一种储蓄方式。零存整取一般每月5元起存,每月存入一次,中途如有漏存,应在次月补齐,只有一次补交机会。存期一般分一年、三年和五年。

(1)计算聪聪家每个月的结余。

(2)根据聪聪家的实际情况,制定合理的.存钱计划,并说明理由。

(3)按照你的存钱计划,算一下,到期能取回多少钱?

知识链接:零存整取利息计算公式是:利息=月存金额×累计月积数×月利率。

其中累计月积数=(存入次数+1)÷2×存入次数。据此推算一年期的累计月积数为(12+1)÷2×12=78,以此类推,三年期、五年期的累计月积数分别为666和1830。

五、分享收获

{设计意图:希望学生通过这节课,感受在给定目标下,针对具体问题提出设计思路、制定简单的方案解决问题的过程。}

六、课下作业

为自己的零花钱制定一个零存整取的存钱计划。

{设计意图:作为本节课知识的延续,让学生养成一个合理消费的习惯,做一个生活上有计划的人,合理支配自己的财富}

板书设计:

收入:2160+4180=6340(元)

支出:2500+800+200+160+30=3690(元)

结余:6340—3690=2650(元)

湘教版六年级上册数学教案篇2

教学目标

1. 使学生结合实例,理解比的意义,知道比的前项和后项,会正确地读、写两个数的比,会求比值。了解比和分数、除法之间的联系,会把比改写成分数的形式。

2. 在解决实际问题的过程中,了解比在日常生活中的广泛应用,体会数学与生活的联系,培养对数学学习的兴趣。

教学重点

理解比的意义,比和分数、除法之间的联系。

教学过程

一、 创设问题情境,引入比

电脑出示三幅长方形的画(标出每一幅的长和宽)。

谈话:这里有三幅不同形状的画,你们觉得哪幅画的形状看起来最舒服、最美观?(学生都认为第二幅比较美观)三幅画画的都是美丽的海滨,为什么同学们都认为第二幅比较美观呢?(第一幅和第三幅画要么太长,要么太窄,长和宽的比例不合适)这三幅画长和宽的长度不同,所以给人的感觉就不一样,你知道可以怎样来表示每幅画长和宽的关系吗?(第一幅画长是宽的2倍,宽是长的1/2……)

提问:还可以怎样表示它们的关系?

过渡:是的,我们还可以用比来表示每一幅画长和宽的关系。今天这节课我们就来认识比。

二、 自主活动,认识比

1. 用比表示两个同类量的相除关系。

(1)讲解:像第一幅画长是宽的2倍,也可以表示为:长和宽的比是2比1,记作2 ∶ 1,“∶”是比号。宽是长的'1/2也可以表示为:宽和长的比是1 ∶ 2。你能说一说怎样用比表示第二幅画、第三幅画长和宽的关系吗?

学生分别用比表示另外两幅画的长和宽的关系。

(2)出示一瓶××牌洗洁液,用实物投影放大洗洁液的使用说明。

谈话:在日常生活中,我们经常用比表示两个数量之间的关系。如:这瓶洗洁液,上面的使用说明就是用比来表示的。

指说明中1∶4的图,提问:这里浅色部分和深色部分分别表示什么?你知道1 ∶ 4是表示什么意思吗?(表示洗洁液和水的比是1 ∶ 4,就是1份洗洁液要加4份水的意思,洗洁液的体积是水的1/4)

再问:那么水和洗洁液的比是几比几?表示什么意思?

师生共同讨论1 ∶ 8和1 ∶ 1的含义。

2. 用比表示两个不同类量的相除关系。

谈话:通过刚才的学习,同学们对比有了初步的认识。下面我们再看一幅图(出示图:一堆梨,下面标有2千克,共3元;一堆苹果,下面标有3千克,共6元)。

提问:根据图中的信息,你知道梨的单价是多少元吗?

根据学生回答,板书:单价=总价÷数量。

讲解:像这样总价和数量之间的关系也可以用比来表示,梨的总价和数量的比是3 ∶ 2,表示总价除以数量。

提问:你能用比来表示苹果的总价和数量之间的关系吗?

这里的6 ∶ 3表示什么意思?(表示总价除以数量)

3. 理解比的意义。

谈话:根据上面的例子,你能说一说什么叫两个数的比吗?

小结:两个数相除又叫做两个数的比。

4. 自学课本。

提问:关于比,你还想了解哪些知识?下面请同学们带着这些问题自学课本第53页,再和小组里的同学互相说一说,你知道了什么?

反馈:通过自学,你又了解了哪些知识?

师生共同讨论下面的问题:

(1)比由哪几部分组成,分别叫什么?比的后项能为0吗?为什么?

(2)什么叫比值?怎样求比的比值?

(3)比和除法、分数有什么联系?

(4)比还可以写成怎样的形式?

小结:(略)

三、 巩固练习,深化理解

1. 完成“练一练”第1、2题。

学生完成填空后,让学生说一说每个比所表示的意思。

2. 完成“练一练”第3题。

学生改写后,再读一读,并分别指出每一个比的前项和后项。

3. 小强和爸爸身高的比。

出示:小强的身高是1米,他爸爸的身高是 173厘米。写出小强和他爸爸身高的比。

学生练习后,组织交流,并说一说为什么小强和他爸爸身高的比不能写成1 ∶ 173。

4. 糖水的甜度。

出示:两杯糖水,并标出糖和水质量的比,第一杯是1 ∶ 20,第二杯是1 ∶ 25。

提问:你知道哪杯水甜吗?为什么?

出示:第三杯中糖4克,水100克。

谈话:这杯糖水和刚才的哪一杯一样甜?先想一想,再和同桌说一说你是怎样比较的。

提问:根据第一杯糖和水质量的比是1 ∶ 20,你能说出第一杯中糖和糖水质量的比吗?

四、 课堂总结

提问:今天我们共同学习了什么?你们有什么收获?还有什么问题吗?

五、 课外延伸

出示课始的三幅画,谈话:还记得我们一开始出示的三幅画吗?为什么大家都认为第二幅比较美观呢?你能算出这幅画长和宽的比值吗?(学生算出长和宽的比值大约是0.618)其实呀,这里面还藏着许多奥秘呢,同学们想了解吗?

课件播放短片,介绍黄金比。

谈话:其实,在我们的身边就有很多的黄金比,如我们经常见到的长方形纸的长和宽的比,等等。同学们如果有兴趣,可以在课后再去研究。

湘教版六年级上册数学教案篇3

教学说明:

乘法运算定律的归纳、总结和运用对学生来说是一种能力的提高,它区别于一般计算的学习,需要学生有更强的观察能力和思维能力与之相配合,所以学习的困难会更大,特别是合理运用乘法运算定律使一些计算简便这部分内容。本课是要完成的是乘法分配律的学习与研究,下面就教学安排作简单说明。

一、 观察与思考:通过对例题和生活实例的观察、研究和学习,初步感知乘法分配律,同时培养学生的观察能力和观察习惯,在生活中寻找和学习数学知识。

二、 讨论与归纳:这是比观察与思考更高层次的要求。在观察与思考的基础上,通过学生之间的合作,通过相互讨论、研究、补充、完善,归纳出乘法分配律,从而使学生体验合作的重要性与必要性,体验成功的喜悦,懂得合作,学会合作。

三、 练习与提高:通过两部分内容的练习,进一步熟悉、理解、认识和掌握乘法分配律。

四、 简便运算:完成例2的学习,这一部分内容的思考性比较强,特别是对乘法运算定律的灵活运用学生的困难较大,所以在教学时要区别对待。基本内容部分要求全体学生掌握,也就是这一教学段的前三部分内容,这一教学段的最后一部分内容是为学有余力的学生准备的`,让不同的学生有不同的收获,但同时获得成功的体验。

教学内容:乘法分配律 p28-29 例1、例2

教学目标:

1、知道乘法分配律的字母表达式。

2、懂得可以用乘法分配律把一个数与两个数的和相乘改写成两个积的和。

3、会用乘法分配律使一些计算简便。

教学重点:理解掌握乘法分配律。

教学难点:乘法分配律的得出及其运用。

教学安排:

一、 观察与思考:

1、 出示例1:(1)看下图计算,有多少个小正方体?

a、用实物演示引出两种算法。

(5+3)2=16(个) 52+32=16(个)

b、观察以上两式得到:(5+3)2=52+32

2、 出示生活实例:

①一件上衣30元,一条裤子20元。买4套这样的服装一共需要多少元钱?

引导学生用两种方法解答,然后通过计算观察得出:

(30+20)4=200(元) 304+204=200(元)

即:(30+20)4=304+204

②2角硬币和5角硬币各6枚,一共有多少钱?

请学生同桌说说两种计算方法,然后汇报结果。

(2+5)6=42(角) 26+56=42(角)

即:(2+5)6=26+56

3、 请学生仔细观察上面讨论得到的三组等式之间有什么相同的特点?

(前后两式是相等的、先算和再算积与先算积再算和是一样的)

这就是今天我们重点要研究的乘法分配律。板书课题:乘法分配率

二、 讨论与归纳:

1、 出示问题,读读想想。

a、 以上三组算式分别先算什么?再算什么?

b、 它们之间有什么联系?

先小组讨论,再派代表汇报交流。

得出乘法分配律的正确说法。

看书,齐读乘法分配律。

2、 质疑。

为什么乘法分配律说:两个数的和与一个数相乘而不是两个数的和去乘以一个数。?

(两个数的和与一个数相乘,这个数可写在两数之和的前面,也可写在两数之和的后面,而两个数的和乘以一个数,这个数只能写在两数之和的后面。)

3、 用字母表示乘法分配律。

(a+b)c=ac+bc

三、 练习:

1、 根据乘法分配律填上适当的数或运算符号。

(8+6)3=8○3○6○3

(25+9)40= 40+ 40

(56+ )3=56 +8

2、 判断:

13(4+8)=134+8 ( )

13(4+8)=138+48 ( )

13(4+8)=134+138 ( )

四、 简便运算:

1、 出示例2:(125+70)8

请同桌两人右边的按运算顺序算,左边的用乘法分配律先去掉括号再算。

算好后同桌观察讨论:怎样算比较好?为什么?

教师总结:用乘法分配律能使一些计算简便。

2、 选择题:

1624+8424的简便算法是( )。

a、(16+24)84 b、(16+84)24 c、(1684)24

3、 用简便方法计算下列各题(先同桌讨论,再独立完成)。(有的不会做的学生可以不做)

(25+9)8 29175+2529 48128-2848 7599+75

4、在方框里填上适当的数,使算式能用简便方法计算,你有几种不同的填法。(不会做的学生可以不做)

41□+5923 □□+6328

五、 小结:

1、 乘法分配律及字母表达式。

2、 运用乘法分配律应注意什么?

①运算符号 ②分配合理

湘教版六年级上册数学教案篇4

一、教学目标:

1、使学生认识百分数。

2、了解百分数的意义。

3、会写百分数。

4、区分百分数与分数的不同。

5、让学生在各种活动中,培养比较、分析、分辨的能力。

二、教学重难点:

理解百分数的意义

三、教学过程:

(一)、引出百分数,教学百分数的读法。

1、百分数的引出

师:近年来,我们学生的近视率引起了大家的高度重视,根据去年年底的统计,我市学生的近视情况如下(媒体出示)

师:这里出现了三个新的数,它们分别读作:百分之十八,百分之四十九,百分之六十四点二,你还在什么地方见过上面这样的数呢?

2、揭题

生展示他们找到的百分数。

师有选择的板书并小结:看来生活中这样的数确实挺多的。数学上把这样的数,叫百分数。那么什么是百分数的意义?百分数怎么写?还有哪些跟百分数有关的知识呢?这节课,我们就一起来学习一下。

(二)、凸显百分数的优点,教学写法

1、比较中凸显百分数的优点

师:大家都在关心我们学生的近视情况,作为老师当然更要关心我们学校同学的近视情况。下面是老师调查的二、三年级的近视情况(出示表格)

年级总人数近视人数近视人数占总人数的近视率

二年级20 2

三年级25 3

师:二年级的近视人数占总人数的多少呢?三年级呢?哪个年级的近视情况好些呢?你是怎么比较的?可以先在草稿本上写写算算。

学生反馈:可能会出现通分成分母是50的,也可能是100的。

师挑选通分成分母是100的提问:为什么把分母都通分成100呢?(便于比较)

2、教学写法

师:二年级近视人数占总人数的10/100,又可以写成二年级近视率是10%。(媒体出示再板书)我们写百分数的时候在分子10的后面加上百分号。看看我们写百分数的时候要注意什么呢?(百分号的小圆圈写小点)那么三年级近视人数占总人数的12/100,可以怎样写呢?生写在草稿本上,指名一生板演。

(三)、百分数意义、

1、指导着说百分数的意义

师:三年级的近视率12%指的是哪两个数之间的关系?

师:也就是说三年级的近视率12%表示?(三年级近视人数是总人数的12/100)(板书)

师:那么二年级的近视率10%又表示什么?(二年级近视人数是总人数的10/100)(板书)

2、生自主说

师:那么谁能说说我市小学生的近视率18%,中学生的近视率49%,高中生的近视率64.2%分别表示什么意思呢?自己轻轻地说一说。

生反馈说,师选择小学生近视率表示意义板书。

师:看到这些信息,你想说什么呢?

3、小组内说

师:通过这些百分数的呈现,我们大家简洁明了的看到了学生近视情况的严重性,其实在生活中百分数的`应用非常广泛,同学们刚才也找了很多,你能把你找到的百分数所表示的意义在小组内说说吗?

生反馈,师挑选组的代表说,并板书。

4、小结百分数意义

师:说了那么多百分数的意义,那么到底百分数表示什么呢?

师小结:刚才同学们都已经说的都非常接近了。百分数就表示一个数是另一个数的百分之几。(板书意义)

(四)、辨别百分数与分数区别

1、辨别

师:我们来看看下面的百分数是表示谁是谁的关系呢?

出示:

鸡的只数是鸭的75%

一根绳子的长度是一根铁丝的51/100。(51/100可以改写成51%吗?)

出示:

一堆煤重87/100吨。(看看下面这个分数可以改写成百分数吗?为什么?)

2、师小结:分数可以表示一个具体的数,也可以表示两个数之间的关系,而百分数只能表示两个数之间的关系,后面不能加单位。

3、加深理解进行判断

(1)一段绳子长29/100;

(2)一段绳子长29%米;

(3)分母是100的分数都是百分数;

(4)百分数的分母都是100

(五)、巩固练习

师:简单回顾一下,我们这节课学习了哪些知识?你会写百分数了吗?

1、写出下面的百分数

百分之一百分之二十八百分之零点五

2、读出下面百分数,想想下面的信息给了你哪些启示?

(1)一次性筷子是日本人发明的,日本的森林覆盖率高达65%,但他们一次性筷子全靠进口;我国森林覆盖率不到14%,却是出口一次性筷子的大国。

(2)地球总储水量中只有3%是淡水,而这些淡水中可以直接饮用的只有0.5%。

(3)今天我们班同学的出勤率是100%。

四、教学结束:

课堂总结

师:这节课你有哪些收获呢?其实爱迪生说过天才=99%的汗水+1%的灵感

同学们对于学习也要付出努力,不怕辛苦。

湘教版六年级上册数学教案篇5

教学目标:

1、使学生明确本学期的学习任务。

2、使学生巩固五年级的相关知识,为新知识的学习奠定基础。

教学过程:

一、 课堂教学常规的说明:

1、上课的各项要求说明等。

2、练习的各项要求说明等。

3、其他说明。

二、 复习旧知:

(一) 填空:

1、分数单位是1/8的最大真分数是( ),最小假分数是( ),最小的带分数是( )。

2、1米的3/7是( )米,3米的1/7是( )米。

3、一座挂钟的分针长10厘米,时针长7厘米,一昼夜,分针尖端走了( )厘米,时针扫过了( )平方厘米。

(二) 解决问题:

1、一个正方形的周长与圆的周长相等,已知正方形的边长是3.14米,圆的半径是多少米?

2、把一些桃平均分给12只猴子,正好还剩1个;如果平均分给8只猴子,正好也剩1个。这些桃至少有多少个?

3、甲、乙两车从两地同时相向而行,甲车在超过中点10千米的地方与乙车相遇,已知相遇时甲车行了140千米,乙车行了多少千米?

4、一根钢管长3米,重4千克,这样的钢管每米重多少千克?1千克这样的钢管长多少米?

5、甲6分钟做13个零件,乙8分钟做17个零件,丙12分钟做25个零件,比一比,他们谁做得最快?

6、如果用两根长62.8厘米的.绳子分别围成一个圆形和一个正方形,你觉得哪个图形的面积大些?大多少平方厘米?

7、将一个直径是12厘米的圆分成64等份后,拼成一个近似的长方形,这个长方形的长和宽各是多少厘米?面积是多少平方厘米?

8、一满瓶油连瓶重650克,用去一半后连瓶重400克,瓶重多少千克?油重多少克?

9、一个圆形花坛的周长是15.7米,在花坛周围铺一条宽0.5米的环形小路,这条小路的面积是多少平方米?

10、一捆电线长178米,装了8盏电灯,还剩下4米,平均每盏灯用电线多少米?(只列方程)

(三) 拓展练习:

1、某汽车站有甲、乙、丙开往三地的汽车通过,甲车每隔15分钟开过此站,乙车每隔10分钟开过此站,丙车每隔12分钟开过此站。现三辆汽车在同一时刻从此站开过后,再过多少时间又同时从此站开过?

2、(1)工人们修一段路,第一天修了公路全长的一半还多2千米,第二天修了剩下的一半还少1千米,还剩20千米没有修完。公路的全长是多少千米?

(2)有一桶油,每次抽出桶里油的一半,连续这样抽了5次后,桶里还有油10千克,求这个桶里原有油多少千克?

3、周燕有一盒巧克力糖,7粒一数还余4粒,5粒一数还余2粒,3粒一数正好,这盒巧克力糖至少有多少粒?

4、甲、乙两人原来一共有46元。甲买一本故事书用去12元,乙买一本科技书用去18元,这时两人剩下的钱正好相等。甲、乙两人原来各有多少元?

5、公路上一排电线杆,共25根,每相邻两根间的距离原来都是45米,现在要改成60米,可以有几根不需移动?

6、一个最简真分数的分子,分母是两个连续自然数,如果分母加上4,这个分数约分后是2/3,原来这个分数是多少?

湘教版六年级上册数学教案篇6

教学内容:

冀教版小学数学六年级上册80-81页。

教学目标:

1.过程与方法:结合具体事例,经历综合运用所学知识解决合理购物问题的过程。

2.知识与技能:了解合理购物的意义,能自己做出购物方案,并对方案的合理性作出充分的解释。

3.情感态度与价值观:体验数学在解决现实问题中的价值,丰富购物经验。

教学重点:

学会理财,能对自己设计的理财方案作出合理的解释。

教学难点:

能对自己设计的理财方案作出合理的解释。

教学过程:

一、创设情境、设疑激趣

师:同学们,现实生活中,商家为了吸引顾客或扩大销售量,经常搞一些促销活动,谁来说一说,你都知道哪些促销方式?

师:同学们知道的可真多,日常生活中,我们如何利用商家的促销手段,学会合理

购物呢?这节课,我们就来研究购物问题。(板书:学会购物)

二、引导探究、自主建构

活动一:促??

(一)观察情境图,先了解方便面的三种包装和一袋的价格,计算出其他两种包装的价格写在书上,再了解三个商店的优惠条件。

师:同学们打开书第80页,看方便面促销问题,认真观察上面的图,说说你们从图上都发现了哪些信息?

1、学生自学

2、交流

(预设)

生:我发现甲店是“买一包送一袋,买一箱送一包。”乙店是打九折优惠;丙店是购物达到30元就能打八折优惠。

师:请对这三个商店的促销方式进行一下比较分析,谈一谈各有什么优势?三家店都适合怎样购物呢?

(这里不需学生能精确计算每个商店的优惠额度,但大体上能了解每个商店更适合

2怎样购物。)

(二)提出问题(1):买1袋这种方便面去哪家商店合适?买2袋、3袋呢?

1、思考

2、全班交流

(预设)师:作为消费者,买同样的东西肯定愿意买便宜的,也就是少花钱。同学

们不计算,你能判断出买1袋方便面去哪家店合适吗?

生:在乙店合适,因为买一袋在甲店、丙店都得不到优惠。

师:那买2袋、3袋呢?

生:买2袋、3袋也不行。

师:买几袋才能享受到甲店的优惠条件呢?

生:买5袋或5袋以上就可以得到甲店的优惠条件。

(三)提出问题(2):买7袋这种方便面去哪家商店合适?买8袋、9袋、10袋呢?

1 、自己独立思考、计算

2 、全班交流

(预设)

师:现在如果想买7袋方便面,在甲店可以怎样买?

生:只买6袋就行了。因为商店会送一袋。

板书:

甲店:1.5×6=9(元)

乙店:1.5×7×90%=9. 45(元)

结论:甲店合适。

(按以上方法交流买8、9、10袋的结果)

10袋情况预设:

甲店1、1.5×9 =13.5(元)

13.5÷10=1.35(元)

甲店2、1.5×10=15(元)

10+2=12(袋)

1.5 ÷12=1.25(元)

乙店:

1.5×10×90%=13.5(元)

(这里面甲店的第二种购买方法,虽花了15元,但能得到12袋,有的学生会认为这是一种较便宜方案,现实生活中也如此。所以不应按错误定论。)

(四)提出问题(3)买多少袋方便面才能达到丙店的优惠条件?

学生计算后汇报

30÷1.5=20(袋),买20袋才能达到丙店的优惠条件。

湘教版六年级上册数学教案篇7

教学目标

1.理解分数乘以整数的意义;掌握计算法则;正确计算分数乘以整数的算式题。

2.浸透事物是相互联系、相互转化的辩证唯物主义观点。

教学重点

分数乘以整数的意义及计算方法。

教学难点

分数乘以整数的计算法则的推导。

教具准备

1.自制两套三层复式投影片。

2.投影图片3张。

教学过程设计

(一)复习

(出示投影一)

1.口算:

问:怎样计算?(分母不变分子相加。)

2.根据题意列出算式:

(1)5个12是多少?

(2)3个14是多少?

列式:

(1)12+12+12+12+12或125

(2)14+14+14或143

题中的两个式子哪个简便?(125,143)

它们各表示什么意思呢?(5个12是多少? 3个14是多少?)

能用一句话概括这两个乘法算式的意义吗?(就是求几个相同加数和的简便运算。)

这是整数乘法的意义,它对于分数乘法适用吗?

(二)讲授新课

1.分数乘以整数的意义。

多少块?(投影)

2份。)

听回答,老师边重复边投影(三层复式投影片)。

把一块蛋糕(出示一个圆)平均分成9份(覆盖平均分的9份),取其中2份(覆盖2份是红色的)。

(3)根据图意列出算式。

问:这个加法算式有什么特点?(三个加数相同。)

问:为什么?(三个加数相同。)

问:这个算式你们学过吗?它是什么数乘以什么数?(分数乘以整数。)

师:这就是今天我们要学习的分数乘以整数。(板书课题)

师:分数乘以整数表示什么意思呢?观察上面两个算式,并说出

(分数乘以整数的意义与整数乘法的意义相同,就是求几个相同加数

练一练(投影片二)

①看图写算式。

②根据意义列式。

③看算式说意义。

2.分数乘以整数的法则。

(1)推导法则。

我们了解了分数乘以整数的意义,你想知道怎样计算吗?

①导出计算方法。

你会计算吗?看哪些同学不用老师讲解就能依据转化思想把分数乘以整数这个新知识转化为已经学过的旧知识来进行计算。(可以互相说、互相看。)

该怎么办呢?

引导学生讨论得出:

边加上虚线框。)

(2)根据上面方法试算下面各题。

(学生在练习本上做,用投影反馈。)

②归纳法则。

通过以上几个式题的计算,想一想分数乘以整数怎样计算呢?

师:比一比,看哪个组的同学总结的`语言准确又简练。小组讨论,总结出法则。

分数乘以整数,用分数的分子和整数相乘的积作分子,分母不变。(板书)

③应用法则计算。

有不一样的吗?强调结果化成带分数。

还有不同的做法吗?

讨论,这两种方法哪种简单?为什么?

强调:能约分,要先约分;结果是假分数一定要化成整数或带分数。

(三)巩固练习

1.看图写算式。

第3页的第1题,看图写算式。(填书上)

行间巡视,注意:被乘数和乘数的位置。

2.先说算式意义,再填空。

3.看算式,约分计算。

4.口算:

5.判断:(打手势)

(四)课堂总结

今天我们学习了什么内容?分数乘以整数的意义是什么?分数乘以整数的法则是什么?计算时应注意什么?(能约分要约分,结果是假分数,要化成整数或带分数。)

课堂教学设计说明

1.确定教学目标、教材的重点难点,它对整个教学过程具有导向、激励和评价作用。本节课的重点是分数乘以整数的意义与法则,难点是法则的推导。在设计教案中,以突出重点为中心,教法与内容设计要服务于中心。

2.依据知识的迁移,进行很必要的铺垫,利用知识之间的联系,精心设计复习题,为教学重点服务,使学生顺利掌握分数乘以整数的意义与整数乘法意义相同。同时复习分数加法,为推导公式进行铺垫。

3.重视法则推导过程,应用转化思想,启发学生把新知识转化为已学过的旧知识。进一步了解知识之间的联系,适时点拨,激发学生主动探索新知识。教师有意识地让学生参与法则推导,让学生先尝试、观察、讨论、总结,而后再概括法则,使学生学得生动活泼,发挥小组的团结协作作用。在课堂上,不仅有师生之间的信息交流,而且还有同学之间的信息交流。教师根据信息反馈,及时对教学过程进行调控,以达到真正提高课堂教学的目的。

湘教版六年级上册数学教案篇8

第一单元 方 程

教学内容:p7“回顾与整理”、“练习与应用”第1—4题

教学目标:

1、通过“回顾与整理”使学生逐步掌握一些整理知识的方法,养成对所学知识分阶段进行整理的习惯。

2、使学生进一步掌握有关方程的解法,体会到列方程解决实际问题的基本思考方法,加深对列方程解决实际问题的理解,激发学生进一步信息方程、应用方程的兴趣。

教学资源:小黑板

教学过程:

一、揭示课题

本单元,我们主要学习了有关列方程解决实际问题的知识。今天我们要将这些知识进行整理一下。

二、回顾与整理

1、出示小组讨论题:

(1)像3.4x+1.8=8.6、5x-x=24这样的方程各应怎样解?

(2)在列方程解决实际问题时,可以怎样找数量之间的相等关系?举例说明。

2、让学生围绕这两个问题进行独立思考。

3、把各自思考的情况在小小组内进行交流。

4、全班交流。

讨论题(1) 可以让学生说说首先要将这样的方程作怎样的变形,并提醒学生解方程时要养成检验的习惯。 讨论题(2)可以引导学生举例说说本单元学会了用方程解决哪些实际问题,并结合所举例子说明解决每一类问题的基本思路。

三、练习与应用

1、解方程

180+6x=330 27x+31x=145 x-0.8x=10

2.2x-1=10 15x÷2=60 4x+x=3.15

(1)让学生独立完成,指名板演。

(2)集体交流时要关注学生解这些方程的准确率,并及时引导学生总结解每一类方程的基本方法,反思解这些方程时可能遇到的问题。

2、解决实际问题

(1)南京长江大桥的铁路桥长6772米,公路桥长4589米。它的铁路桥比武汉长江大桥铁路桥的5倍多197米,公路桥比武汉长江大桥公路桥的3倍少421米。

① 武汉长江大桥铁路桥长多少米?

② 武汉长江大桥公路桥长多少米?

** 让学生认真审题,独立思考后找出相关数量之间的相等关系说一说。师随机板书:

武汉长江大桥铁路桥的长度×5+197=南京长江大桥铁路桥的长度

武汉长江大桥公路桥的长度×3-421=南京长江大桥公路桥的长度

** 问:在列方程时应该怎样表示题中的两个未知数量?

(2)练习与应用第3题

** 先让学生看图后说说了解到了哪些信息。

** 问:这棵树苗从80厘米长到104厘米,经过了几个月?你怎么知道的?

** 问:你能说说题中数量之间的相等关系吗?

(学生如有困难,教师可以画线段图帮助学生理清数量关系)

随机板书:

小树原有的高度+6个月长的`高度=小树现在的高度

(3)学校印制画册一共用去1740元,其中制版费300元,其余的是印刷费。每本画册的印刷费是3.6元,学校印制了多少本画册?

** 学生读题后,教师先结合图书的印刷过程向学生介绍“制版费”和“每册印刷费”的含义,从而帮助学生理解:印制画册用去的总钱数是由两个部分组成的。一部分是制版费,另一部分是印刷费,也就是每本印刷费与本数的乘积。

** 再让学生独立解答,指名板演。

** 交流时让学生结合所列的方程说说自己的思考过程。

三、总结: 通过今天的整理与练习,你又有哪些收获?还有什么疑惑?

四、作业: p7“练习与应用”第2、3题。

湘教版六年级上册数学教案8篇相关文章:

2023九年级上册数学教学计划6篇

2024版三年级科学上册教案5篇

小学一年级汉语文上册教案参考5篇

小学三年级上册科学课教案6篇

八年级数学上册工作计划6篇

小学人教版美术一年级上册教案6篇

部编版一年级语文上册教案6篇

一年级上册数学人教版教学计划7篇

小学数学二年级上册教学工作计划5篇

七年级上册一单元作文8篇

湘教版六年级上册数学教案8篇
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档文档为doc格式
点击下载本文文档
109811