六上分数乘分数教案通用8篇

时间:
Fallinlove
分享
下载本文

教案是教师们为了提高学生学习兴趣而认真准备的教学材料,通过撰写详细的教案,我们能够更好地指导学生学习,下面是精品文档站小编为您分享的六上分数乘分数教案通用8篇,感谢您的参阅。

六上分数乘分数教案通用8篇

六上分数乘分数教案篇1

【教学内容】

?义务教育课程标准实验教科书数学》(人教版)六年制六年级上册第三单元《分数除法》的整理与复习

【单元主题分析】

本单元的概念比较多,尤其是比的初步认识这节中相似的概念较多,并且容易混淆,因此复习时要着重使学生弄清各个概念之间的联系和区别。计算是数学的基础,做题时掌握计算方法,培养良好的计算习惯。在做分数四则混合运算时,注意运算顺序,选择适合自己的方法计算,并通过交流了解其他算法。值得强调的是:掌握分数除法的计算方法,能正确进行计算,是学生必须掌握的一项技能,也是本单元的教学重点。但是,在计算过程中把除法转化为乘法,对学生来说是数学认识上的一次飞跃。另外,分数除法应用题历来是学生学习中的难点,它经常需要学生灵活应用数量之间的关系。。分析数量关系是解决实际问题的一个重要步骤。让学生知道分数应用题应该怎样想,学会思考的方法。还可以将它与比的应用进行对比,发现这两种题型是可以互相转化的。

【复习目标】

1、学生自主复习本单元的概念,进一步掌握本章所学的基本概念和计算法则,提高学生的计算能力和解题能力。引导进一步理解分数除法和比的意义、计算及应用。

2、通过梳理与沟通,让学生感悟相关知识的联系和区别。如分数乘除法解决问题,求比值、化简比,比和除法、分数之间的关系等。

3、培养学生良好的复习习惯。

【复习重点】

能比较熟练地进行分数除法、求比值以及化简比的计算;会正确地用方程或算术方法解答文字题。

【复习难点】

使学生进一步掌握用方程或算术方法解答已知一个数的几分之几是多少求这个数的应用题和稍复杂的分数除法应用题,提高学生解答分数应用题的能力.

【教具准备】

课件、练习纸

【复习过程】

一、回顾整理、汇报交流

师:昨天,老师布置同学们复习并整理分数除法这一单元,完成了吗?把你整理的内容先在小组内交流一下吧!

(生小组交流)

师:我选了几份有代表性的,想看看吗?

(学生汇报)

①简单列出本单元提纲 ②总结出个别重要的知识 ③虽然知识点零碎,但很全面

师:能把这么多零碎的知识全面的总结出来,看来你们很用心地对本单元进行了复习!可是,你们知道吗?复习不仅仅是回顾所学的知识,更重要的是找到知识间的联系,总结出学习方法,真正达到温故而知新!

二、练中梳理、沟通联系

师:请看(出示线段图) 什么图?仔细看,你能看明白什么?

生:b是单位“1”,分成了5份,a占了3份;a是b的 —理解的真好!

师:它可以用一个怎样的数量关系式来表示呢?

生:b× =a

师:你能把它改写成两个除法算式吗?

生:a÷b=

a÷ =b

师:为什么这样改?(积÷因数=因数)

所以说,分数除法的意义与整数除法相同,都是已知两个因数的积与一个因数,求另一个因数的.运算。

师:想一想,两个数相除还可以用什么形式表示?

生:比。

师:什么是比?

师:那么a比b是 ?

生:a:b=

师: 是什么?(比值)

它还可以表示a与b的比是3:5

在a÷b= 这儿它是商

看来,比与分数以及除法之间,是有一定的联系的。有什么联系呢?

(生说,然后示课件)

有没有区别呢?(运算、数、关系)

师:既有密切的联系,又有本质的区别!

师:好了,下面看这儿 a÷ =b,如果a是2,你能算出b是多少吗?

(生计算)

师:说一说,怎么算的?

师:除以 ,算的时候变成了乘 ,依据什么?

分数除法的计算方法是什么?(生说)

乘除数的倒数,这样,就把分数除法的计算转化成了乘法。(示转化)

师:想一想,像这样,a是2,b是 , a与b的比还是( )吗?

(生有认为是,有的认为不是)

师:究竟是不是呢?(算算看)

生:(① 2÷ =2÷ =2× = )→这是求比值的方法,得到比值还是

师:②看看这种方法可以吗?2: =(2×3):( ×3)=6:10=3:5=

↓ ↓

为什么前项×3 后项也×3 ?

这是通过化简比,得出结果还是3:5

问:化简比依据是什么?

对比:谁能说一说:求比值与化简比有什么不同?

生:求比值可以用前项÷后项,是一个商,结果可以是小数,分数或整数。

而化简比是根据比的性质,化成最简整数比,结果必须写成比的形式。

师:其实,求比值的计算中,常常会用到分数除法的计算方法。

三、解决问题,提升方法

1、根据线段图提简单的分数除法问题

师:如果a是六年级女生有300人 ,你能提出什么问题呢?

生:六年级总数?

师:可以吗?还可以怎么提?(示题)会做吗?

生:300÷

师 为什么用除法?题目的关键是哪句话?

生:女生是男生的

师:根据条件,可以写出什么数量关系式?

生:(男生)× =300

师:现在知道为什么用除法了吗?

师:还可以用什么方法?

生: 〤=300

2、稍复杂的分数除法问题

师:如果把条件换一换:女生比男生少 怎么做呢?

(生做,然后汇报交流)

师:对比这两题,你有什么发现?

生:男生是单位“1”,未知 。

师:求单位“1”可以用什么方法?

生:可以用方程,也可以用除法。

师:用除法做是根据了除法的意义,而用方程相当于顺着题目的意思列式,把分数除法问题转化成分数乘法法问题 ,这样就简单了。

3、比的应用

师:我把题目全换一换(示投影),变成了什么问题?

生:比的问题

师:能直接列式吗?

生:列式解答

师:把比转化成分数

问:为什么不用方程?

生:单位“1”知道,是800人。

师:这种按比分配的问题,也转化成了求“一个数的几分之几是多少”的分数乘法问题。

小结:这样把知识联系起来,问题就简单多了,应用起来也更灵活了!

四、综合练习,自我检测

师:经过我们再次整理,就把本单元这些散落的知识点穿在了一起,形成一个知识网。找到了联系,明确了方法,老师这儿还有一份检测题,有信心完成吗?

(分发练习纸,根据完成情况反馈交流)

(分析错因,大多是计算出错)

小结:看来掌握方法固然重要,细心认真的学习习惯也很重要!

五、课堂小结

师:咱们六年级的同学,面临对小学六年所学知识的复习。希望今天这节课对你们以后的学习能有所帮助,有所启发!

附练习题

一、 填空

1、8:10= =40÷( )=( )(填小数)

2、20千克:0.2吨的比值是( ),最简整数比是( )。

二、计算

÷2 ÷

×8÷ ( ÷

三、应用

一本书的 是80页,已看的与未看的页数比是9:1。已经看了多少页?

六上分数乘分数教案篇2

教学目标

1、结合具体情境,使学生掌握分数混合运算的顺序,能正确进行计算

2、能运用所学知识解决简单的实际问题,提高综合解题能力。

学情分析

本班共有72名学生,男女生人数协调,基础知识比较扎实,应用题的`解决较差,少数学生数学成绩很差。

重点难点

1、掌握分数混合运算的顺序,正确计算分数混合运算。

2、解决有关的实际问题。

教学过程

4、1复习导入

4、1、1教学活动

活动1【导入】复习导入

不计算,说说下面各题的运算顺序。

3700÷9 0、3×9÷6

50×【(900—90)÷9】

活动2【讲授】合作探究

1、出示例3

一天吃三次,每次吃半片,12片药可以吃几天?

2、理解题意

(1、)分析题意,列出算式。

(2、)提问:求小红可以吃几天,应先求什么?再求什么?

(3、)小组合作讨论并填写预习卡。方法一:每次吃半片,吃3次:

12片可以吃几天?

方法二:12片可以吃:12÷ =12×2=24(次)

24次可以吃:24÷3=8(天)

(4)互相交流,请两位同学板演并说一说解题思路。

(5)列出这两种方法的综合算式。

(6))提问:综合算式里分别含有几级运算?应先算什么,再算什么?

7)小结:分数混合运算和整数混合运算相同,在同级运算中,如果

没有括号,按从左往右的顺序计算。如果有两级运算,先算乘除,再算

加减。有括号的先算小括号,再算中括号。

活动3【练习】巩固练习

1、完成教材第33页“做一做”。

提问:梯形的面积公式是什么?

2、完成教材第35页第10题。

活动4【作业】课堂小结

这节课你有什么收获?

六上分数乘分数教案篇3

教学目标:

1.了解分数的主产生,理解单位“1”,理解理解分数的意义,分数单位。

2.理解分数的意义的过程中,渗透数形结合、应用意识等数学思想方法,培养学生的抽象概括能力。

3.通过分数意义的学习,让学生初步感受数学的神奇魅力。

教学重点:理解分数的意义。

教学难点为:理解单位“1”。认识分数单位。

教学准备:

教具:、一个苹果、5支铅笔、一个文具盒

学具:圆片、正方形、一根一米长的绳子、一板面包(8个)图片(分格)、12个苹果图片

教法与学法:教法:激趣谈话法、讲授法、引导发现法、问题激励法等学法:自主探究法、合作交流法等。

课前交流:

师:老师很荣信,来到美丽的太极城――旬阳和你们一起上一节数学课,特别的开心,孩子们你们欢迎我吗?

生:欢迎

师:怎么没见你们的掌声呢?

生:鼓掌

师:谢谢,老师今天也带来了许多小礼品,想要吗?

生:想

师:我不能白送给你们,因为“天下没有免费的午餐”需要你们的付出努力才能得到,上课积极表现、勤于思考、善于发言你们就有机会得到哟。有信心吗?

?设计意图】:建立关系,活跃课堂学习氛围,为后面的学习做铺垫。

教学过程:

一、激趣导入,揭示新知。

师:今天老师考考我们班孩子们看你们的.数学水平达到五年级的水平没有?(出示两块橡皮泥左手一块右手一块),分别出示左右手,问学生几块?

生:1快。

师:同学们看的够仔细的啊,现在老师把它们合在一起,用什么数来表示?快速回答我?

预设一:2(你的数学水平还局限于一年级)

预设二:1(你能给老师说说为什么是“1”呢?)

生:指把两个小快的橡皮泥捏成一个整体了,所以可以用“1”表示了。(引出“整体”)

师:(竖起大姆指,你的想法就是不一般,老师不说你多么优秀,但你就是——与众不同)老师现在又把这一整个橡皮泥平均(强调平均分)分成2份,同学们看看,现在我左手拿的是这整个橡皮泥的多少?

生:一半、0.5、

师:有文字表示的,幼儿园都会,有小数表示的,三年级学过。但我要表扬用分数表示的同学,你太给力了,懂老师会理解老师,你一语道破老师的天机了。你能给给大家说说 中间一条线表示的是什么?“2”是这个分数的什么?1又叫分数的什么呢?现在老师左手用分数表是?右手呢?这是几个 ?两个 合起来就是一个整体“1”

师:经过你们的努力你们已经达到了五年级的水平了。现实世界中存在的量,除了一些单位量合成的,可以用自然数表示多少的量之外,还存在许多可以分割的无法用自然数表示的量,这时我们可以用分数来表示。今天我们就来研究下分数的意义。(板书并出示课题)

师:刚才我们以分橡皮泥共同研究了分数是怎么来的。其实,分数在很早以前就产生了,据科学家研究,仅次于自然。古人在测量物体的长度时也遇到了同样的困惑,请同学们认真看屏幕,古代分数的产生。然后听老师给我们作的介绍(ppt出示介绍录音)

师:现实在你还在哪儿见过分数(谈生活中的分数)

生:音乐中,八分音符等于 ,死海表层的水中含盐量达到 ,我国的人均水资源占世界平均水平的 ……

?设计意图】:通过具体的事物,为学生创设智力陷井,激发求知欲望。同时,对分数的各个部分的名称进行了一次再现的过程。再次为下面学习分数单位及有几个这样的分数单位做好铺垫。学生从历史、现实的生活中,初步了解分数的产生、应用的广泛性,呈现了学习分数的必要性和重要性。

二、合作探究,理解分数的意义

1.操作研究

师:分数重要吗?你想知道分数的哪些知识?

生:汇报交流,梳理本节课的知识点。

师:好,首先我们就来围绕什么是分数来研究研究。给同学们五分钟时间,研读教科书第46页的知识,小组交流,打开准备的学具袋,利用自己喜欢的方式表示 这个分数。

2.反馈交流

师:我刚才转到看了一下,收集了这些表示 的方法,现在我请他来告诉大家表示的方法?

生一:(投影展示)我把圆片一个对折,再对折,这样就平均分成4份了,涂出这样的一份就表示 。(老师指导语言的表达:同学们请听我说,我是把……你们听明白了吗?)

师:嗯,你是把一个圆片平均分成4份,再取其中的一份表示的 。真有想法。

生二:(投影展示)我把一个正方形对折,再对折,这样就平均分成4份了,涂出这样的一份就表示 。

师:你也是把一个图形平均分成4份,用其中的一份来表示 的。真好,同学们,有没有用不同的方法来表示 的吗?

生三:我是这样把一根绳子对折再原折,取其中的1份来表示 的。

师:你很有主见了。你把1米长的绳子也平均分成了4份取其中的1份来表示 的,我们把一米长的绳子也可以称为一个计量单位。请坐。同学们,刚才这三位同学给我们分享了用一个圆形、一个正方形、一个计量单位分别平均分成了4份,表示其中的1份涂上不同的颜色,涂色的部分就是这一个物体的 。除了上面的这样一个物体外,你还有其它的表示方法吗?

生四:我是把8个面包平均分成4份,用其中的一份来表示 的。

师:嗯?你的 是多少面包?

生五:2个

师:(疑惑)上面同学样表的示的 都是1部分,怎么这次的 却是2个了呢?

生:上面是一个物体,下面是8个面包,平均分成4份,每份就是2个面包,把这2个包看作是1份,就取这1份。所以8个面包的 表示就2个面包了。

师:你的分析真到位。哪个同学能用刚才这个同学一样的方法表示12个苹果的 。

生:我表示12个苹果的 是3个苹果,12个苹果,平均分成4份,每份就是3个,把这3个苹果看作是1份,就取这其中的1份。所以12个苹果的 是3个苹果。

师:你真是个会学习的孩子。不仅学的快还用的快。像8个面包、12个苹果这些物体平均分成4份,取其中的1份也可 来表示。

?设计意图】:在三年级认识分数的基础上,让学生自由表示 ,加深对分数意义的理解,使学生进一步明确:平均分的整体可以是一个物体,也可以是一些物体,为概括分数的意义做好准备,同时为理解单位“1”做好铺垫。

3.归纳定义,认识单位“1”

师:同学表现的非常积极。发言的同学条理清楚声音响亮,听讲的孩子认真仔细思考有序。(用展示刚才5个同学汇报的几种情况)现在请大家用心的观察、比较、分析用 所表示的物体或计量单位有哪些相同的地方?哪些不同的地方?先自己想一想,再和同桌交流说一说自己的想法。

生一:相同的地方,我们都是平均分成4份(板书:平均分),表示其中的1份。不同的地方是我们分的物体不同,分的物体的总数不同。

师:我们把什么物体平均分了?

生:一个圆、一个正方形,一根一米长的绳子,一些面包、苹果。

师:回答的非常好!在这里,一个物体、一个计量单位或一些物体等都可以看作一个整体。把这个整体平均分成若干份,这样的一份或几份都可以用分数来表示。这个整体我们可以用自然数“1”来表示。(板书:整体 单位“1”)

师:现在同学们想想,我们还可以把哪些物体看成单位“1”?

(学生汇报,学生自评)

师:同学们,通过刚才我们的研究发现,把单位“1”平均分成4份,这样的1份可以用 表示,这样的3份呢?

师:看样子同学们已经掌握了用分数来表示物体的量,现在跟着老师一起说,把单位“1”平均分成4份,表示这样的3份,可以用 来表示;把单位“1”平均分成5份,表示这样的2份。

六上分数乘分数教案篇4

教学目标:

1、通过教学, 使学生在理解分数除法意义及掌握分数乘法应用题解题思路的基础上,掌握已知一个数的几分之几是多少求这个数的稍复杂分数除法应用题的解题思路和方法,能比较熟练地解答一些简单的实际问题。

2、通过教学,培养并提高学生的分析、判断、探索能力及初步的逻辑思维能力。

教学重点:

弄清单位1的量,会分析题中的数量关系。

教学难点:分析题中的数量关系。

教学过程:

一、复习

小红家买来一袋大米,重40千克,吃了 ,还剩多少千克?

1、指定一学生口述题目的条件和问题,其他学生画出线段图。

2、学生独立解答。

3、集体订正。提问学生说一说两种方法解题的过程。

4、小结:解答分数应用题的关键是找准单位1,如果单位1的具体数量是已知的,要求单位1的几分之几是多少,就可以根据分数乘法的意义,直接用乘法计算。

二、新授

1、教学补充例题:小红家买来一袋大米,吃了 ,还剩15千克。买来大米多少千克?

(1)吃了 是什么意思?应该把哪个数量看作单位1?

(2)引导学生理解题意,画出线段图。

(3)引导学生根据线段图,分析数量关系式:买来大米的`重量-吃了的重量=剩下的重量

(4)指名列出方程。 解:设买来大米x千克。

x- x=15

2、教学例2

(1)出示例题,理解题意。

(2)比航模组多 是什么意思?引导学生说出:是把航模组的人数看作单位1,美术组少的人数占航模组的

(2)学生试画出线段图。

(3)根据线段图,结合题中的分率句,列出数量关系式:

航模小组人数+美术小组比航模小组多的人数=美术小组人数

(4)根据等量关系式解答问题。 解:设航模小组有人。

+ =25

(1+ )=25

=25

=20

三、小结

1、今天我们学习的这两道应用题,它们有什么共同点?(今天我们学习的这两道应用题,题里的单位1都是未知的数量,都可以列方程来解,这样顺着题意列出方程思考起来比较方便。)

2、用方程解答稍复杂的分数应用题的关键是什么?(关键是找准单位1,再按照题意找出数量间的相等关系列出方程)

四、练习

练习十第4、12、14题。

六上分数乘分数教案篇5

教学目标

1.使学生理解两个整数相除的商可以用分数来表示。

2.使学生掌握分数与除法的关系。

3.培养学生的应用意识。

教学重难点

1.理解归纳分数与除法的关系。

2.用除法的意义理解分数的意义。

教学工具

ppt

教学过程

一.激趣引入

师:同学们,老师今天给你们带来了几位好朋友,相信你们一定认识他们,让我们看看他们是谁?

课件出示唐僧、孙悟空、沙僧的图片

师:那猪八戒呢?原来他去化缘了,他在路上边走边想:如果能化得8张饼就好了!那猪八戒问什么想要8张饼呢?

引出平均分,让学生列式:8÷4=2(张)

总量÷份数=每份数

二.探究新知

1、老猪化得一张饼,如何分给4人呢?

师:这两道题都是我们学过的用除法来解决的问题,计算的都是把一个整体平均分成4份,求每份是多少。下面我们再来看一下这道题。

把1个饼平均分给4个人,每个人分得多少个?

师:这道题该怎样列式呢?(学生列式,师板书:1÷4)

师:1÷4表示什么意思?

生:1÷3表示把一张饼平均分给4个人,求一个人分得多少。

师:好,这道题也是把一个整体平均分成4份,求一份是多少,也是平均分的问题,所以也要用除法来计算。那么,你知道每人分得多少个吗?

生:1/4个。(师板书)

师:大家都认为是这样吗?(是)谁来说说你是怎么想的?

教师出示课件,学生边说边演示:我们把这个圆看作这张饼,把它平均分成4份,每人得到其中的一份,也就是这张饼的1/4。

师:请大家看,每份都是1/4,每个人得到的是多少个蛋糕呢?

生:1/4个。

师:在分物时,不能正好得到整数的结果,我们就可以用分数来表示。所以每个人分得的饼就是1/4张。

教师说明:1÷4表示把一张饼平均分给3个人,求每人得到多少个,而我们通过演示知道了每人得到1/3张。所以1÷3的结果就是1/3。(板书“=”)(齐读算式)

(课件出示例2)

指名读题

师:谁能列出算式?

生:3÷4(师板书)

师:这道题是把一个整体平均分成4份,求每份是多少,也是用除法来计算的。究竟每人分得多少块月饼呢?老师为每个小组都准备了学具(3个圆片),现在请大家利用手中的'学具一起动手分一分,看看到底每人分得多少块月饼。

小组操作,教师巡视指导。

师:大家都有了结论了,哪个小组的同学愿意来给大家说一说你们小组的结论是什么?

(小组边汇报,边演示)

小组1汇报:我们小组是一个一个分的。我们先把一个圆平均分成4份,每人得到其中的1份,也就是1/4块。

师:你能用一个式子表示一下吗?

小组1:1÷4=1/4块。

师:好。请接着汇报吧。

小组1:接下来,我们按照同样的方法分其他两个圆。最后每个人分到的是3个1/4块,也就是3/4块。

师:大家认为他们的方法可以吗?(可以)我们再来一起回忆一下他们的方法。(教师边叙述方法,边进行课件演示)

师:还有没有和这组方法不同的?

小组2汇报:我们小组是把3个圆叠放在一起,把它们一起平均分成4份,每人得到其中的1份,拼在一起就得到了3/4块。

师:(课件演示方法二)这种方法是把3块月饼放在一起,把它们看成一个整体,平均分成4份,每人得到了其中的一份,也就是3块月饼的1/4,拼在一起就是3/4块。

师:通过大家操作我们知道了每人得到了3/4块月饼(板书3/4块)。有些同学是一块一块分的,有些同学是3块一起分的,但这两种不同的方法都得到了3/4块,也就是说3÷4的结果就是3/4。

师:请大家看一看,今天这两道除法算式的结果都是什么数?(分数)请大家想一想,分数与除法有什么关系呢?

学生小组讨论

生:我们发现,被除数就是分子,除数就是分母。

师:你能试着表示出来吗?

生:被除数÷除数=被除数/除数(师板书)

师:如果用a来表示被除数,b表示除数,你能用字母来表示分数与除法之间的关系吗?

生1:a÷b=a/b(师板书)

生2:老师,我认为还要写上b≠0。

师:为什么b≠0?

生:因为b表示除数,除数不能为0。

生:分数的分母也不能等于0。

师:好。通过观察思考,我们知道了分数与除法存在着这样的关系(齐读分数与除法的关系)

师:我们知道,两个整数相除,商可以用分数来表示,反过来看看,分数能不能表示两个整数相除呢?

学生观察算式,思考

生:可以。比如3/4=3÷4。

课件出示,齐读:两个整数相除,商可以用分数来表示,要用除数作分母,被除数作分子.反之,一个分数也可以看作两个数相除,分数的分子相当于除法中的被除数,分母相当于除数,

分数线相当于除号。

师:我们通过学习了解了分数与除法的联系,那么分数与除法有什么区别呢?

请学生观察黑板算式,和同学讨论。

学生汇报,教师总结:除法和我们学过的加法、减法、乘法一样,是一种运算;而分数是一种数,同时分数也可以表示两个数相除。

三.巩固练习

1.用分数表示下列算式的商

(1)3÷2=

(2)2÷9=

(3)7÷8=

(4)5÷12=

(5)31÷5=

(6)m÷n=n≠0

2.试一试

÷7=4/71÷=19=÷95/8=÷

3.把1千克葡萄干平均装在2个袋子里,每袋重多少千克?平均装在3个袋子中呢?

4、填空

9厘米=米59秒=分

13分=时5时=日

5.把5米长的绳子平均截成8段,每段长(5/8)米,每段绳子的长度是全长的(1/8)。

六上分数乘分数教案篇6

教学内容:

分数乘法

教学目标:

1、能力目标:能根据解决问题的需要,探究有关的数学信息,发展初步的分数乘法的能力。

2、知识目标:学习分数乘以分数的计算方法,学生能够熟练准确的计算出一个分数乘以另一个分数的结果。

3、情感目标:使学生感受到分数乘法与生活的密切联系,培养学习数学的良好兴趣。

重点难点:

学生能够熟练的计算出分数乘以分数的结果。

教学方法:

师生共同归纳和推理

教学准备:

教学参考书、教科书

教学过程:

一、复习导入

教师出示教学板书,请学生计算下列分数乘法运算题。

教师:来回巡视学生的做题情况,并提问学生说说自己如何计算的?

学生寻找完毕,纷纷举手准备回答问题。

教师提问学生回答问题。(分数乘以分数,分子相乘,分母相乘,能约分的要约分。)

二、课堂练习

学生做第一题折一折,涂一涂。让学生用折纸的.方式再次验证分数乘以分数的运算法则,注意让学生体会分数的几分之几是多少?

学生做第2题,注意让学生体验分数相乘的积于每一个乘数的关系。

学生做第3题,让学生理解分数的几分之几与占整体1之间的关系。

学生做第4题,让学生能够学会比较 的 和 占整体1的大小。

学生做第5题,教师注意让学生整体的几分之几是多少?

学生做第6题,让学生注意区分不同标准的几分之几是多少;占整体的几分之几。

学生做第7题,教师注意让学生利用分数乘法学会解决生活中实际问题。

第8题,学生根据学过的分数乘法知识,分辨一下唐僧分西瓜是否公平。

三、课堂小结

同学们,这一节课你学到了哪些知识?(提问学生回答)

板书设计:

分数乘法

是整个操场 1的 , 是整个操场1的 。

分数乘以分数的运算法则:分子相乘,分母相乘,能约分的要约分。

六上分数乘分数教案篇7

教学目标

1.通过比较,进一步弄清求一个数的几分之几是多少的乘法应用题和相应的列方程解的应用题的数量关系之间的内在联系,解题思路,解题方法的联系和区别.

2.能正确熟练地解答稍复杂的分数应用题.

3.培养学生分析问题和解决问题的能力.

教学重点

明确分数乘、除法应用题的联系和区别.

教学难点

明确分数乘、除法应用题的联系和区别.

教学过程

一、启发谈话,激发兴趣.

在前边,我们已经学习了稍复杂的分数乘、除法应用题,这两类应用题在分析解答

时易混淆.这节课我们就来一起对这两类应用题进行比较.通过比较弄清它们之间的联系与区别.

二、学习新知

(一)出示例8的4个小题.

1.学校有20个足球,篮球比足球多 ,篮球有多少个?

2.学校有20个足球,足球比篮球多 ,篮球有多少个?

3.学校有20个足球,篮球比足球少 ,篮球有多少个?

4.学校有20个足球,足球比篮球少 ,篮球有多少个?

(二)学生试做.

1.第一题

解法(一)

解法(二)

2.第二题

解:设篮球有 个.

解法(一)

解法(二)

解法(三)

3.第三题

解法(一)

解法(二)

4.第四题

解:设篮球 个.

解法(一)

解法(二)

解法(三)

(三)比较区别

1.比较1、3题.

教师提问:这两道题中的第二个已知条件有什么不同?解题思路有什么相同的地方?有什么不同的地方?

(1)观察讨论.

(2)全班交流.

(3)师生归纳.

这两道题都是把足球看作单位1,单位1的量是已知的,求篮球有多少个?

就是求一个数的几分之几是多少?用乘法计算,不同的是(1)题篮球比足球多 ,而第(3)题是篮球比足球少 ,计算进一个要加上多的数,一个要减去少的个数.

2.比较2、4题

教师提问:这两道的第二个已知条件有什么不同?解题思路有什么相同的地方?有什么不同的地方?

(1)观察讨论.

(2)全班交流.

(3)师生归纳.

这两道题都是把篮球看作单位1,而且单位1的量者是未知的,因此要设单位1的量为 ,根据一个数乘以分数的意义找出等量关系列方程解答.熟练之后也可以直接列除法算式解答.

六上分数乘分数教案篇8

教学目标

1、通过观察、探究,理解分数与除法的关系,并会用分数表示两个数相除的商。

2、经历分数与除法的关系的探究过程,明确可以用分数表示两个数相除的商

3、通过观察、探究,渗透辩证思想,激发学生学习兴趣。

教学重难点

教学重点:

掌握分数与除法的关系,会用分数表示两个数相除的商。

教学工具

多媒体课件,圆形纸片,剪??

教学过程

一、创设情境,导入新课,

师:同学们过生日都要吃生日蛋糕,喜欢吃吗?(生:喜欢)

1.师:今天老师就带来了8个小蛋糕把8个小蛋糕平均分给4个人吃,每人分得多少个?

怎么列式?生:8÷4=2(个)

2.师:把8个小蛋糕变成1个大蛋糕把1个大蛋糕平均分给4个人吃,每人分得多少个?

怎么列式?生:1÷4=

二、动手操作,探索新知

1、探索一个物体平均分,体会分数与除法的关系。

(1)师:每人分得多少个?请同学们利用这张白色的圆形纸片,折一折,分一分,看看到底是多少个?生动手折纸,思考

生:把1个蛋糕看作单位“1”,把它平均分给4个人,也就是平均分成4份,每人分得其中的一份,也就是这1个蛋糕的1/4,就是1/4个蛋糕

(2)师:把1个蛋糕平均分给3个人,每人分得多少多少个?怎么列式?

生独立思考并回答。

全班交流,明确:求每人分得多少个,要把1个蛋糕平均分成3份,用除法计算;而把“1”平均分成3份,表示这样一份的数,可以用分数()来表示。所以1÷3=()(个)

2、探索多个物体平均分,体会分数与除法的关系。

师:把3个蛋糕平均分给4个人,每人分得多少个?

师:怎样分公平?每人分得多少个?下面,利用你手中的学具3张圆形纸片,小组合作,分一分,剪一剪。

(1)充分交流、展示学生的想法与做法(可能出现以下几种情况)。

方法一:一张一张分,把每个蛋糕分别平均分成4份,共12份,每人分到3份,3个(1/4)张拼在一起得到(3/4)个。

方法二:三个蛋糕摞在一起,平均分成4份,每人分到1份,1份中有3个(1/4)个,拼在一起得到(3/4)个。

(2)演示:(突出方法二中3个的1/4就是1个的3/4,深化3/4的意义)无论哪一种方法我们都得到:3个蛋糕平均分给4个人,每人分到的就是3/4个蛋糕。即:3÷4=()(个)(板书)

(3)在这里,3/4就有两层含义:既表示1个的蛋糕的3/4,又表示3个蛋糕的1/4

(4)师:同学们真了不起,老师还想考考你们:如果把5个蛋糕平均分给7个人,每人分得多少个呢?你能想象一下分的过程吗?好好想一想,并和同学交流一下。

学生汇报,明确:5个蛋糕的1/7就是1个蛋糕的5/7,即:5÷7=5/7(个)(板书)(5)师:刚才我们是分的蛋糕,现在我们来分分绳子。把3根绳子平均分成5份,每份是多少根?怎么列式?学生思考后回答:3÷5=3/5(根)(课件演示)

3、总结概括分数与除法之间的关系。

1÷4=(个)3÷4=(个)

5÷7=(个)3÷5=(个)

师:观察黑板上的这些算式,你发现了什么?

三、观察算式,概括分数与除法的关系。

(1)请同学们观察这两组算式,你发现分数与除法有什么关系?请观察思考一下,并把你的发现和同学交流一下。

(2)生汇报:我发现除法算式中的被除数相当于分数的`分子,除法算式中的除数相当于分数的分母,除法算式的除号相当于分数的分数线。师补充:除法算式的商相当于分数的分数值。

师强调:相当于

(3)师:请每个同学看着这些算式说一说分数与除法的关系。

(师板书):被除数÷除数=被除数/除数

提问:我们能不能反过来说,分数的分子相当于什么?谁来说一说?

生:分数的分子相当于除法算式中的被除数,分数的分母相当于除数,分数线相当于除号。

(4)师:如果用a表示被除数,b表示除数,二者的关系可以用字母表示成:a÷b=a/b

讨论:用字母表示分数与除法的关系,b是否可以是任何数?为什么?补充板书(b≠0)师板书:a÷b=a/b(b≠0)提问:为什么b≠0?(因为除数不能为0,所以b不能为0。)

师:分数与除法有着如此紧密的联系,那么它们之间有没有区别呢?(学生说不出可以引导)

小组议一议再全班交流,明确:分数是一种数,也可以表示两数相除;而除法是一种运算。

三、练习巩固应用

1、你能很快说出这些算式的商吗?3÷8=5÷9=7÷13=4÷7=40÷56=12÷61=

2、把1千克葡萄干平均装在2个袋子里,每袋重多少千克?怎么列式?

把1千克葡萄干平均装在3个袋子里,每袋重多少千克?怎么列式?

把2千克葡萄干平均装在3个袋子里,每袋重多少千克?怎么列式?

四、全课小结今天这堂课你有什么收获?还有什么问题吗?

六上分数乘分数教案通用8篇相关文章:

六上数学备课组工作计划7篇

六上英语工作计划最新5篇

六上英语工作计划6篇

六上英语工作计划参考5篇

六上教研组工作计划5篇

六上数学备课组工作计划优质5篇

六上教研组工作计划模板6篇

六上语文教师个人工作计划优质7篇

大班教案教案反思通用8篇

小学六上语文教学工作计划6篇

六上分数乘分数教案通用8篇
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档文档为doc格式
点击下载本文文档
108572