小数乘整数教案通用7篇

时间:
Trick
分享
下载本文

教案的内容应该简明扼要、清晰明了,为了确保课堂教学有序进行,教师需要提前准备一份教案,精品文档站小编今天就为您带来了小数乘整数教案通用7篇,相信一定会对你有所帮助。

小数乘整数教案通用7篇

小数乘整数教案篇1

教学目标:

1、理解小数乘整数的计算方法及算理

2、确定小数乘整数的积的小数点位置的方法

教学重点:

掌握小数乘整数的意义及计算方法

教学难点:

能对小数乘整数的计算法则进行推导

教学准备:

多媒体课件

教学过程:

一、复习导入

1、20角=( )元,123角=( )元

2、2.14与3一共有( )位小数

2.5与1.4一共有( )位小数

3、11+11+11+11+11+11=( )×( )

二、探究新知

(一)揭示课题

同学们,今天我们一起来学习“小数乘整数”(板书课题)

(二)出示学习目标

1、理解小数乘整数的意义。

2、掌握小数乘整数的计算方法

(三)小数乘整数的意义。

1、依托现实情境,初步感悟

出示例1情景图,根据信息提出数学问题

选择买3个3.5元的风筝要多少钱

进行讨论

列式

(1)独立思考,汇报交流

可能会有下列方法:

方法1:连加3.5+3.5+3.5=

方法2:3.5×3=

(2)引导学生比较3.5+3.5 +3.5与3.5×3的联系

3.5×3的3表示什么

买100个风筝你会用加法吗?为什么?

(3)感受相同加数可以改用乘法更简便

0.9+0.9+0.9+0.9=( )×( )

0.72+0.72+0.72+0.72+0.72=( )×( )

100个9.3相加列式:

师生共同得出结论:小数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。(全班齐读)

(四)探究小数乘整数计算方法?

1、计算结果

3.5+3.5+3.5=

3.5×3=

2、比较

3.5元○35角

3.5×3与35×3

10.5元与105角

计算时方法一样,10.5的小数位数与因数的小数位之和相同

小结:刚才我们在解决买风筝一共用多少钱时,想到了不同的方法。我们发现以元作单位的小数乘整数,可以化成以角或分做单位的整数乘法来进行计算。

(设计意图:依托现实情境,让学生根据生活经验,用不同方法解决现实问题。然后通过对方法4的着重讨论,在培养学生估算、计算能力的同时,感悟小数成整数还可以先转化成整数进行计算,初步感悟算理和计算方法)

根据所得结论,进一步探究小数乘整数计算的'计算方法。

3、出示0.72×5

(1)现在0.72不再表示钱数,没有了具体的单位,你还能计算出它的得数吗?

(2)学生先独立计算然后小组交流

(3)汇报演示。

板演计算过程,呈现思考过程

交流时,重点引导学生说清是怎样把乘数转化成整数的,乘积又是如何处理的,为什么可以这样转化?将思考过程板演化。(通过交流和板演,在引导学生描述转化过程的同时进一步理解算理,掌握算法。)并指出积末尾的0一般的处理方法。

4、小结小数乘整数的计算方法

小数乘整数,先按照整数乘法的法则算出积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。(注意:积的小数末尾有0时,要先点小数点,再去掉末尾的0)

(设计意图:通过独立思考与合作交流,让学生自主探索,获取小数乘整数的计算方法,进一步理解算理,掌握算法,提高计算能力。)

三、练习拓展

1、口算

5×7= 24×3=

5×0.7= 2.4×3=

2、列竖式计算

6.7×2= 0.82×50=

3.9×17=

四、课堂小结

交流收获

师:通过今天的学习,你学会了什么?(师结合板书进行小结)

板书设计

小数乘整数

3.5+3.5+3.5=10.5

0.72×5=3.6

3.5×3=10.5

小数乘整数教案篇2

教学内容:

列综合算式解答文字题和应用题(例5、例6,做一做和练习十一第1~5题)

教学要求:

1.知识目标:使学生掌握列综合算式解答文字题和应用题的方法。

2.能力目标:会根据文字题中的关键词语“和、差、积、商、除、除以”等,正确使用小括号、中括号。

3.情感目标:提高学生列综合算式解答文字题和应用题的能力。

教学重点:

根据题意确定计算顺序分解计算步骤,列综合算式解答文字题和应用题。

教学难点:

理解算式中什么情况使用中括号,为什么使用中括号。

教具准备:

投影片若干。

教学过程:

一、激发。

1.口算:(练习十一第1题)

32.8+19 0.42×0.5 0.67+1.24

3.06×0.2 0.51÷17 5.2÷1.3

8.2÷0.01 1.82-0.63 1.6×0.4

2.提问

(1)什么是和、差、积、商?和、差、积、商各等于什么?

(2)举例说明除、除以的不同含义。

3.读题口头列算式

(1)637加上86与19的积,再减去1375,差是多少?

(2)从72与64的积里,减去4012除以59的商,差是多少?

(3)532减379的差,加上192除以4的商,和是多少?

4.根据给出的条件列出算式(投影逐个出示)

(1)计算2.4与0.48的`差, 列式为:2.4+0.48

(2)用2.4与0.48的差乘以5, 列式为:(2.4—0.48)÷5

(3)用2.4与0.48的差乘以5所得的积去除12,商是多少?

列式为:12÷(2.4—0.48)×5,对吗? (设疑导入)

二、尝试。

1.出示例5:2.4与0.48的差乘以5,所得的积去除12,商是多少?

2.读题讨论这题求的是什么?该怎样去想?

引导学生回答:这题求的是商,必须知道被除数和除数,被除数是12,除数是2.4与0.48的差乘以5的积。

3.独立列式解答(指名到黑板讲解答思路)

12÷[(2.4—0.48)×5]

=12÷[1.92×5]

=12÷9.6

=1.25

强调:为什么使用中括号?

4.及时反馈:列式不计算,例5改为

(1)2.4与0.48的和乘以5,所得的积去除12,商是多少?

(2)2.4与0.48的和乘以5,所得的积除以12,商是多少?

5.完成p.42页做一做

6.用综合算式解答文字题的关键是什么?应注意什么?

7.出示例6:一个工程队铺一段公路,每天上午工作4.5小时,下午工作3.5小时,如果按每小时铺路48.5米计算,这个工程队一天共铺路多少米?(用两种方法解答)

(1)读题,理解题意。

(2)生独立解答。

一种:48.5×4.5=218.5(米) 二种:3.5+4.5=8(小时)

48.5×3.5=169.5(米) 48.5×8=388(米)

218.5+169.5=388(米)

综合算式

48.5×4.5+48.5×3.5 48.5×(4.5+3.5)

(3)比较两种综合算式有什么联系?

8.完成“做一做”第2题。

三、应用。

1.练习十一第2题。

2.选择正确的算式并说明理由。

(1)8.4加上8.4与1.66的差,所得的和除以4,商是多少? a. 8.4+(8.4—1.66)÷4

b.[8.4(8.4—1.66)]÷4

(2)10减去5.6与1.3的和,所得的差去除24.8,商是多少?

a.[10—(5.6+1.3)]÷24.8

b.24.8÷[10—(5.6+1.3)]

3.列综合算式计算下面各题。

(1)2.8与4的积,减去6.5除以的商,差是多少?

(2)47减去3.2与1.5的积,再加上6.9,得多少?

(3)5.6与0.7的和,乘以1与0.4的差,积是多少?

4.练习十一第4题。

四、体验。

刚才学的例5、例6,就是今天所学的内容:列综合算式解答文字应用题,解答时要根据题意,正确使用小括号、中括号。(板书课题)

五、作业。

练习十一第3、5题。

小数乘整数教案篇3

教学目标

知识与技能:掌握比较容易的除数是整数的小数除法的计算方法,会用这种方法计算相应的小数除法。

过程与方法:通过学生自主探索、合作交流的过程,培养学生分析、归纳,概括等思维能力。

情感、态度与价值观:体验所学知识与现实生活的联系,能应用所学知识解决生活中的简单问题,从中获得价值体验。

学情分析

本节课的教学对象是五年级学生,在此之前学生学习了整数除法、小数的意义和基本性质以及小数乘法的基础上进行教学的,应充分利用学生的生活经验和已有知识,引导学生探索除数是整数的小数除法的计算方法。

重点难点

教学重点:理解并掌握小数除以整数的计算方法。

教学难点:理解商的小数点要与被除数的小数点对齐的道理。

教学过程

第一学时

教学活动

活动1【导入】

一、情境引入

教师:同学们,老师到集市上买苹果,看到两家店在买却不知选择哪一家,你有什么好办法?(课件展示)

教师:到底哪一家更便宜?你会列式吗?你是根据什么列式的?

学生:单价=总价÷数量

教师:这些算式和我们以前学过的除法算式有什么相同点和不同点?

学生1:它们的被除数都是整数。

学生2:它们的被除数都是小数,以前都是整数。

教师:同学们很善于观察,今天我们就来学习除数是整数的小数除法。(板书课题:除数是整数的小数除法)

活动2【讲授】

二、探索新知

1.导入:同学们,瞧,王鹏就坚持每天晨跑,身体可棒呢!(出示教材第24页情境图)让学生先说一说从图上都看到了哪些信息,然后根据图上信息提出一个数学问题。

根据学生的回答,出示已知条件和问题:王鹏坚持晨练。他计划4周跑步22.4千米,他平均每周应跑多少千米?

思路分析

2.师引导学生思考:求平均每周应跑多少千米,怎样列式?

学生列出算式:22.4÷4。

1.想一想,被除数是小数该怎么除呢?

组织小组讨论。分组交流讨论情况,展示各种算法:

生1:22.4km=22400m,22400÷4=5600m.5600m=5.6km。22.4÷4=5.6。

生2:可以把小数除法转化成整数除法来计算。

生3:还可以列竖式来计算。

2.师引导学生思想讨论:怎样把小数除法转化成整数除法?

小组交流后汇报:先把被除数22.4扩大10倍,转化成224÷4=56,所得的商再缩小到原来的,所以22.4÷4=5.6。

3.引导用竖式计算:如果不转化成整数除法,直接用22.4÷4,你会怎么做?请同学们试着用竖式计算。计算完后,交流自己计算的方法。

让几名学生将自己计算的竖式在黑板上展示出来,并说说是怎样算的。

教师根据学生竖式,演示(见板书设计竖式):

根据学生的竖式追问:24表示什么?

引导学生回答:24表示24个0.1,再用24个0.1除以4就是6个0.l,所以要在5的后面点上小数点来表示。

4.提问:同学们观察一下,商的小数点位置与被除数小数点的位置有什么关系?(理解后回答:因为在除法算式里,除到被除数的哪一位,商就写在那一位上面,也就是说,被除数和商的相同数位是对齐了的',只要把小数点对齐,相同数位才对齐了,所以商的小数点要和被除数的小数点对齐。)

5.归纳总结:怎样计算小数除以整数?

(按整数除法的方法除,计算时商的小数点要和被除数的小数点对齐。)

活动3【练习】

三、巩固拓展

1.你们能帮助老师解决难题吗?到底哪一家更便宜?学生用自己喜欢的计算方法独立完成,教师巡视点拨。

2.完成教材第24页”做一做“。(课件展示)学生用自己喜欢的计算方法独立完成练习题,完成后组织学生集体订正,并说一说你是怎么计算的。

教师要注意学生处理商中小数点的情况,学生在写商时可能会漏掉小数点或点错小数点位置。

3.完成教材第26页”练习六“第1题。

学生独立完成除法算式,集体订正。提问:比一比你有什么发现?

引导学生通过整数除法和被除数是小数的除法的对比,让学生理解整数除法的计算方法和小数除以整数的计算方法是一样的,不同的是商的小数点的处理问题。

4.(课件展示)运输队一辆货车在7天内节约了柴油35.7千克,这辆货车平均每天可以节约多少千克?

先把题目的要求读一读,然后同桌互说,再指名说一说。独立完成,指名板演。

小数乘整数教案篇4

教学内容:

整数、小数四则混合运算的运算顺序(例1~例3和做一做,练习十第1~4题。)

教学要求:

1.知识目标:使学生进一步掌握整数、小数四则混合运算顺序,明确第一级运算和第二级运算的概念;能比较熟练地计算整数、小数四则混合运算式题。

2.能力目标:能在学生掌握整数四则混合运算和小数四则混合运算的基础上,对整数、小数四则混合运算进行高度概括、总结。

3.情感目标:学会使用中括号,灵活运用运算方法。培养大家勤于动手动脑的良好习惯。

教学重点:

1.整数、小数四则混合运算的运算顺序。

2.中括号的使用。

教学难点:

在四则混合运算的过程中,遇到除法的商的小数位数较多或出现循环小数时,一般保留两位小数后再计算。在取近似值的这一步要写约等号。

教具准备:

投影片、投影器

教学过程:

一、激发。

1.口算

32.8+19 1.82-0.63 0.42×0.5 8.2÷0.01

5.2÷1.3 0.67+1.24 0.51÷17 1.6×0.4

2.提问:我们学过哪些运算?(这些运算统称四则运算)

3.计算四则混合运算的顺序是怎样的?(板贴)

一个算式里,如果只有加减法或只有乘除法,要从左往右依次计算。

一个算式里,如果有加减法和乘除法,要先算乘除,再算加减。

一个算式里,如果有小括号,要先算小括号里面的。

二、尝试。

1.出示例1:下面的.算是有哪些运算?运算顺序是怎样的?

3.7-2.5+4.6 3.6×6÷0.9

⑴读题想一想,你知道了什么?

生回答

①第一个算式含有加、减两种运算,要先算减法,后算加法。

②第二个算式含有乘、除两种运算,要先算乘法,后算除法。③这两个算式中,除了整数就是小数。

导入:这就是今天要研究的整数、小数四则混合运算(板书课题)

⑵师:加法和减法叫做第一级运算,乘法和除法叫做第二级运算。

⑶你能把“一个算式里,如果只有加减法或只有乘除法,要从左往右依次计算”换一种说法吗?

引导学生说出“一个算式里,如果只有同一级运算,要从左往右依次计算”。

⑷生试算,指名板演。

3.7-2.5+4.6 3.6×6÷0.9

=1.2+4.6 =21.6÷0.9

=5.8 =24

⑸反馈练习:口述下面各题的运算顺序。

7-0.5+0.83 3.6÷0.4×5

2.出示例2:下面的算式里有几级运算?运算顺序是怎样的?

35.6-5×1.73 6.75+2.52÷1.2

⑴读题想一想,你知道了什么?

生回答

①这两个算式里都含有两级运算,所以第一题要先算乘法,再算减法;第二题要先算除法,再算加法。

②这两道题的运算顺序是:一个算式里,如果有两级运算,要先算第二级运算,后算第一级运算。

⑵试算并说说解题思路。

35.6-5×1.73 6.75+2.52÷1.2

=35.6-8.65 =6.75+21

=26.95 =27.75

⑶反馈练习:先说出运算顺序,再算出得数。

7-0.5×14+0.83 2.6+8×0.5×3

3.6÷0.4-1.2×5 0.75÷0.3÷0.5-3.2

3.例1和例2都是没有括号的整数、小数四则混合运算,接着请看例3。

三、示范。

1.出示例3:计算3.6÷1.2+0.5×5。

⑴生独立计算,集体订证时,说说这道题含有几级运算?

⑵在3.6÷1.2+0.5×5里,如果要先算1.2+0.5怎么办?运算顺序怎样?

⑶在3.6÷1.2+0.5×5里,如果要先算(1.2+0.5)×5,又该怎么办?

⑷讨论

⑸汇报讨论结果,板书

3.6÷(1.2+0.5)×5 3.6÷[(1.2+0.5)×5]

⑹提示:有时需要改变算式中的运算顺序,就要用到括号;如果使用小括号后还需要改变运算顺序,就必须用到中括号。一个算式里,如果有括号,要先算括号里面的,再算中括号里面的。

⑺自学p.40页内容

⑻你看懂了哪些内容?还有什么不明白的?

⑼注意:如果遇到除不尽的情况,或者商的小数位数较多或出现循环小数时,一般可以只除到第三位,然后四舍五入保留两位小数再接着往下计算。在保留两位小数取近似值这一步,要注意写约等号“≈”,到下一步如果没有再取近似值,仍要写等号。

2.反馈练习

0.4×(3.2-0.8)÷1.2 5×[(3.2+4.06)÷6.05]

四、应用。

1.填空(投影出示)

⑴加、减、乘、除四种运算统称为( )。

⑵加法和减法叫做第( )级运算;乘法和除法叫做第( )运算。

⑶一个算式里,如果只含同一级运算,要从( );如果含有两级运算,要先做( )运算,后做( )运算;如果有括号,要先算( ),再算( )里面的。

2.练习十第1、4题。

3.判断并说明理由。

13.6×3-40.8÷2 3.8+5.6÷7×4

=40.8-40.8÷2 =7.4÷7×4

=0÷2 =1.2×4

=0 =4.8

五、体验。

这节课你学会了什么知识?

六、作业。

练习十第2、3题。

小数乘整数教案篇5

教学内容:

教科书第18页例4和做一做

教学目标:

1.会归纳总结除数是小数的小数除法的计算方法,能比较熟练地计算除数是整数的小数除法;

2.能根据乘除法之间的关系进行验算,提高计算的正确率;

3.养成良好的计算、验算习惯。

教学重点:

掌握小数除以整数的计算方法,你能正确计算

教学难点:

特殊情况的小数除以整数的算法

教学过程:

一、复习引入

1.口算

2.4÷2 4.8÷6 9.09÷9

8.24÷8 6÷5 1÷5

2.填空,并说出为什么?

(复习乘除法之间的关系,为下面学习验算做好准备)

3.列竖式计算(生板演)

(1)7.44÷4 (2)7.44÷8

(3)102÷24 (4)4.551÷5

四道逐渐变难

二、探究新知

1.在评价学生的计算结果中帮助学生学会归纳和总结。

师:通过刚才的解题,你能说出小数除以整数是怎么除的吗?

学情预设:学生有的会把步骤在说一遍,有的会讲出前面“被除数的整数部分不够除”和“除到被除数的小数末尾还有余数”两种特殊情况的小数除以整数的算法,教师一一给与肯定。

师:做小数除以整数还有什么要提醒大家的?

四人小组讨论并归纳

学情预设:生根据小数乘法经验说出转化乘整数除法去除;商的小数点要和被除数的小数点对齐;哪一位不够商1就商0,然后继续除。如果除到被除数的末尾仍然有余数,要添0后再除。

课件出示补充。

2.在暴露计算错误的过程中引导学生学会验算。

(1) 师:为了保证我们的计算正确,怎么办?——验算

验算是一种很好的.学习方法和习惯,怎样验算黑板上面的小数除法呢?

学情预设:生根据整数除法经验能说出用乘法验算除法,或估算一下,或用被除数除以商等。

师:四人小组,一人选一道进行验算,算完在组内说说你是怎么想的?

(2)门诊台

课件出示。

小结:用估算能知道计算有没有错;用乘法或再除一遍的方法能保证计算正确

三、巩固练习

1.小马虎也做了两道题,请同学们看看他做对了吗?如果不对应该怎么订正?

37.8÷6=63 7.4÷5=1.4……4

2.计算并验算

43.5÷29 18.9÷27

1.35÷15 207÷45

3.书第20页:7、8题

四、课堂小结

说说小数除以整数的计算法则,有什么要提醒大家的?

小数乘整数教案篇6

教材说明

学生在前几册教材中已经学习过了有关速度、时间、路程之间数量关系的应用题。但是以前学习的这种应用题,都是研究一个物体的运动情况,从这部分教材开始,将要研究两个物体(两人、两车、两船等)的运动情况。这里以相遇问题为主,研究两个物体在运动中的速度、时间和路程之间的数量关系。两个物体运动的情况是多种多样的,有方向问题,出发地点问题,还有时间问题。学生要全部掌握这些是较困难的。本册教材的重点是教学两个物体相向运动的应用题。其中又以“相遇求路程”和“相遇求时间”两种为主。关于两物体相遇,求其中一个物体的运动速度的应用题,放在后面,用列方程的方法解答。

学好两物体相向运动的相遇问题,关键是弄清每经过一个单位时间,两物体之间的距离变化。由于学生在这方面的生活经验较少,往往不易理解相向运动的变化特点。为此教材首先出现一个准备题,通过图示来说明什么叫做“相向而行”。接着通过列表分析了每经过1分、2分、3分后,两个人之间距离的变化,让学生理解什么是“相遇”。然后再通过例3、例4教学“相遇求路程”和“相遇求时间”的应用题。

在例3中,教材通过图示着重说明了小强和小丽两人走的路程的`和就是他们两家之间的路程。但是解答方法可以不同。第一种解法是先求两人各自走多少米,再加起来。这种解法思路较清楚,学生容易理解。第二种解法稍难一些,但是有了准备题做基础,学生就能比较好理解为什么要先求每分钟两人所走的路程的和。这种解法不仅比第一种解法简便,而且是教学例4的基础。

在例4中,教学“相遇求时间”的应用题。这恰好是利用例3中的数量关系进行逆运算。教材没有再详细地进行分析,只是提出启发性问题,让学生想应该怎样解答。

在练习十四中,除了编排了相向运动的相遇问题以外,还有一些稍有变化的题目。例如:相背行驶、不同时出发、间接给出某一车的速度等,为的是扩展学生的经验,让学生更多地熟悉有关两个物体运动变化时的数量关系,同时也防止学生在解题时死套类型或公式。

教学建议

1.这部分内容可以用3课时进行教学。完成练习十四中的习题。

2.教学例3之前,可以先复习速度、时间和路程之间的数量关系。然后说明,以前我们都是研究一个物体运动的速度、时间和路程的关系。现在我们要研究两个物体运动的速度、时间和路程的关系。接着,出示第54页上面的准备题,通过画图或者让两个学生演示,相对走一走,说明什么叫做“同时出发”和“相向而行”。再结合图示或学生的演示,看每分两人距离的变化,让学生在图下面的表中填写数目。学生填完表以后,教师可以组织学生分析表中各个数量之间的关系,弄清两人在相对行走的过程中,经过1分、2分、3分后,每个人走过的米数和两人之间的距离有什么关系。最后再弄清什么叫做“相遇”,相遇时,两个人走过的路程和两家之间的距离有什么关系。

3.通过例3教学相向运动求路程的应用题时,可以画出线段图来帮助学生弄清题意,使学生看到小强和小丽在相遇时两人走过的路程的和,就是他们两家之间的距离。然后,可以提问:“怎样才能求出两人走过的路程的和呢?”可以先让学生试着列式计算,然后组织讨论。使学生明确,先分别求出两人各自走过的路程,也就是各自从家到学校的路程,再加起来就是两家之间的路程。教学完第一种解法后,可以让学生联系准备题中分析过的数量关系想一想,在这题中由于两人同时出发,那么每经过1分钟两人之间的路程有什么变化,到相遇时怎样?求两家之间的路程还可以怎样算?引导学生列出第二种算式计算。做完后可以让学生说一说自己是怎样分析和解答的。在这之后,还可以让学生比较一下两种解法,想一想它们之间有什么联系。从数量关系上看,第一种解法是用两人各自的速度乘时间,得出两人各自走的路程,然后再加起来;第二种解法是根据两人同时出发后相遇,时间相同,可以先算出两人每分钟一共走多少米,也就是“速度和”,再乘时间。从数学知识上看,两种解法的算式之间的联系正好符合乘法分配律。然后,通过例3下面“做一做”中的习题和练习十四中第1~3题,使学生巩固所学的知识。

4.通过例4教学相向运动求相遇时间的应用题。教学时,可以先让学生自己解答复习题。复习前面刚学过的两人相遇求路程的应用题。然后再把条件和问题改成例4,并画图表示出条件和问题,然后引导学生想,已知两地相距270米,又知道两人各自的速度,能不能求出相遇的时间?并且联系例3的第二种解法,启发学生想,“每经过1分钟两人之间的路程有什么变化?”“到相遇时两人共走了多少米?”“那么经过多少分钟两人可以走完这270米,可以怎样计算?”让学生试着列式解答。然后找几个学生说一说自己是怎样分析解答的。在学生做完例4下面“做一做”中的习题以后,订正时也要找几个学生分析一下自己的解法。

小数乘整数教案篇7

教学目标

(一)理解小数乘以整数的意义,掌握小数乘以整数的计算方法。

(二)理解“被乘数有几位小数,就从积的右边起数出几位,点上小数点”的计算方法的道理。

(三)培养抽象、概括的能力。

教学重点和难点

掌握小数乘以整数的计算方法,并理解“被乘数有几位小数,就从积的右边起数出几位,点上小数点”计算方法的道理。

教学过程设计

(一)复习准备

1.先说出下列算式的意义,再口算:

17×2 5×16 4×30 126×1

56×10 28×100 15×4 65×0

小结:

(1)整数乘法的意义是什么?

(2)整数乘法的计算方法是什么?

2.口算下列各题,并观察积的变化有什么规律?

观察思考:

(1)从左往右看,积有什么变化?为什么会发生这样的变化?积的变化有什么规律?

(2)从右往左看,积有什么变化?积的变化有什么规律?

小结:积的变化规律是怎样的?(在乘法里,一个因数不变,另一个因数扩大(或缩小)10倍、100倍、1000倍、……积也扩大(或缩小)10倍、100倍、1000倍、……)3.填空:

(1)1.5扩大10倍是( );

(2)2.25扩大( )倍是225;

(3)1.2扩大( )倍是12;

(4)38缩小10倍是( );

(5)85缩小( )倍是0.85;

(6)270缩小( )倍是27。

(二)学习新课

1.创设情境

同学们,你们经常为家里买东西吗?你会算帐吗?请举例。

一天,妈妈要小芳去买5米花布,小芳来到商店,选中了一种带有弯弯的月亮和星空的图案的花布。每米6.5元,买5米要用多少元?谁来帮小芳算算?(教师口述,同时板书例1。)

2.引导发现

(1)通过列式,理解小数乘以整数的意义。

学生根据题意列式:6.5+6.5+6.5+6.5+6.5。

这个加法算式有什么特点?(加数相同。)

根据这一特点,你还能用别的方法表示吗?

6.5×5。

6.5×5表示什么?(6.5×5表示5个6.5的和或6.5的5倍。)

你能说出下列算式表示什么?

2.7×5 5.8×4 3.54×2 1.63×11

小结:

小数乘以整数的意义是什么?(求几个相同加数的和的简便运算。)

小数乘以整数的意义与什么算式的意义相同?(小数乘以整数的意义与整数乘法的意义相同。)

说明整数乘法的意义也适用于小数乘以整数。

(2)计算:

思考、讨论:6.5×5应如何计算呢?

提示:能不能把6.5转化成整数呢?转化后积会发生什么变化?

学生试做。

用投影打出学生做的过程,并由学生讲解:

①6.5×5=6.5+6.5+6.5+6.5+6.5=32.5(元);

讨论以上几种算法,哪种对,哪种不对,为什么?(①结果正确,方法不简便;②不对,因为325是65×5的积,不是6.5×5的积;③对,把6.5扩大10倍是65,用65×5=325,积325也扩大了10倍;要使积不变,325必须要缩小10倍,才是6.5×5的积。)

学生重点讲解法③的道理,教师板书:

(先把6.5扩大10倍成65,再按照整数乘法的计算方法计算65×5=325,再把乘出来的积325缩小10倍是32.5。)

答:5米要用32.5元。

小结:

计算小数乘以整数的思路是什么?(把小数乘法转化成整数乘法计算。)

转化的方法是怎样的?(先把小数扩大成整数,按照整数乘法去计算,因数扩大了多少倍,积就要缩小多少倍。)

(3)填空,并讲出道理。

(4)小结,引导学生得出计算方法。

①观察以上各题,你发现积的小数位数与什么有关?有什么关系?为什么?(积的小数位数与被乘数的小数位数有关,被乘数有几位小数,积就有几位小数。因为要把小数乘法转化成整数乘法,被乘数扩大了多少倍,乘数不变,积也随着扩大了多少倍。因此必须再把积缩小多少倍。)

②小数乘以整数的计算方法是什么?

计算小数乘以整数,先按照整数乘法的计算方法算出积,再看被乘数中有几位小数,就从积的右边起数出几位,点上小数点。

(三)巩固反馈

1.说出下面各算式中积应有几位小数:

25.4×36 2.37×125 0.15×3

1.032×24 3.506×1 0.017×21

2.在积的适当位置上添上小数点:

观察:积的小数位数是否与被乘数的小数位数相同?为什么?(积中小数部分末尾的零省略不写,被划去了,积的小数位数与被乘数的小数位数不同。)

3.看谁算得又对又快。

25×4= 18×5= 2.5×4= 1.8×5=

0.25×4= 0.18×5= 0.025×4= 0.018×5=

注意:计算的结果,小数部分末尾的零要去掉,把小数化简;小数部分位数不够时,要用“0”占位。

4.列出乘法算式,再算出来。

(1)14个9.76是多少?

(2)6个3.25是多少?

(3)5.24的5倍是多少?

(4)1.6的8倍是多少?

5.课后作业 :p4:1,2,3,4。

课堂教学设计说明

小数乘以整数是在整数乘法的意义和法则的基础上进行教学的。为了使学生能够顺利地利用知识的迁移规律,掌握小数乘以整数的意义和计算方法,我们在复习中设计了整数乘法的意义和计算方法,小数点位置的移动引起小数大小的变化规律以及积与因数的变化规律。

在新课的引入上,注意联系学生的生活,使学生很自然地参与到新知识的探索之中。通过带有思考性的问题,引导学生思考,并大胆让学生尝试,讲解、讨论,把学生引导到算理的探究过程之中。在学生理解算理的基础上,通过观察比较总结出计算方法,提高学生的抽象、概括能力。

练习的设计由易到难,思维过程既有展开,又有压缩,突出重点和难点,有助于学生形成技能技巧,提高学生的计算能力。

板书设计

小数乘以整数

例1 花布每米6.5元,买5米要用多少元?

(1)6.5+6.5+6.5+6.5+6.5

=32.5(元)

(2)6.5×5=32.5(元)

答:买5米要用32.5元。

意义:求几个相同加数的和的简便运算。

计算方法:先按照整数乘法的法则算出积,再看被乘数有几位小数,就从积的右边起数出几位,点上小数点。

小数乘整数教案通用7篇相关文章:

通用技术教案参考7篇

幼儿园中班分餐教案通用7篇

数字50到60的教案通用7篇

绘画龙的教案通用7篇

二上劳动教案通用7篇

幼儿大班水的教案通用7篇

小学生跑的教案通用7篇

幼儿园社会课教案通用7篇

幼儿园音乐活动教案通用7篇

心理健康教育班会主题教案通用7篇

小数乘整数教案通用7篇
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档文档为doc格式
点击下载本文文档
107961